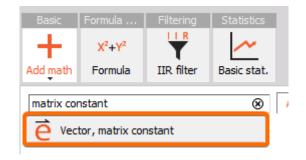
Vector Matrix Constant

How-to Guide Vector, Matrix, Constant V21-1

1. Table of contents

1. Table of contents	2
2. Introduction	3
3. Definition of vector/matrix	3
4. Syntax and operations	4
5. Visualization 5.1 X and Y cut	11 13
6. Array statistics Legend	15 17
Warranty information	17
Calibration	17
Support	17
Service/repair	18
Restricted Rights	18
Printing History	18
Copyright	18
Trademarks	18
Documentation version history	18



2. Introduction

Arrays in DEWESoft can be in the form of vectors or matrices. This document describes how to define an array, present it on visual controls and how to use mathematics syntax on them.

3. Definition of vector/matrix

First, we will define a matrix channel in DEWESoft. Add a math called **Vector**, **matrix constant** under the Math section.

Manually enter a wanted Vector or a Matrix.

Output	Channels setup		I	mport/Export data
Constant_1 ~	Channels			File Format
Name Constant 1	Constant_1	``````````````````````````````````````		Clipboard \checkmark
Name Constant_1	\odot			Copy Paste
Description	Define values			
Units - Color		Data type		
Preview Values X axis Y axis	Matrix ~	Single	~	
10.000 Axis 1 - (-)	Axis 0	_		
3,000	Values count Name	Unit	Axis type	Offset Step
	10 Axis 0	-		✓ 0 1
2,000			onsequep	
5,000-	Axis 1			
1.000	Values count Name	Unit	Axis type	Offset Step
	4 🚔 Axis 1	-	Offset/step	~ 0 1
0.000	Axis 0 (-)/Axis 1 (-)	0 1	2 3	
	0	1 0	0 0	_
0,000 2,000 4,000 6,000 8,000	1	0 2	0 0	-
				_
	2	0 0	3 0	_
	3	0 0	0 4	
	4	0 0	5 0	
	5	0 6	0 0	
	6	7 0	0 0	-
	7	0 8	0 0	
	8	0 0	9 0	
	9	0 0	0 10	

4. Syntax and operations

Under Math - Formula - Arrays operations with vectors and matrices can be applied.

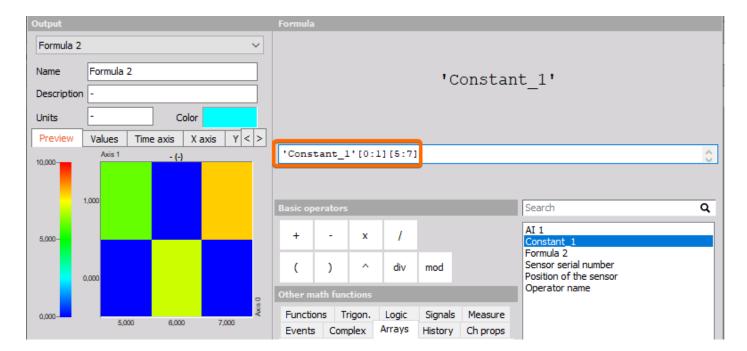
Output	Formula							
Formula 2 V Name Formula 2					'Co	onstan	t 1'	
Description -								
Units - Color								
Preview Values Time axis X axis Y < >	'Const	ant 11						~
Avis 1 - (-) 3,000	Const	ant_1	•					
	Basic ope	rators					Search	Q
5,000-	+	-	x	1			AI 1 Constant_1	
1,000	()	^	div	mod		Formula 2 Sensor serial number Position of the sensor	
0,000	Other ma	th function	ons				Operator name	
0,000	Function	ns Trig	on.	Logic	Signals	Measure		
0,000 2,000 4,000 6,000 8,000	Events	Comple	ex /	Arrays	History	Ch props		
	٥	0	[0:	len-1]	{0:1}			
	[,,]	[:]	ze	eroes	ones			
	minind	maxind	m	inpos	maxpos			
Templates	min	max	avg	sum	integrate			

Formula "Matrix Channel" [N] [M] outputs elements from matrix in the position (M,N), where M and N are indexes (integer positions in array).

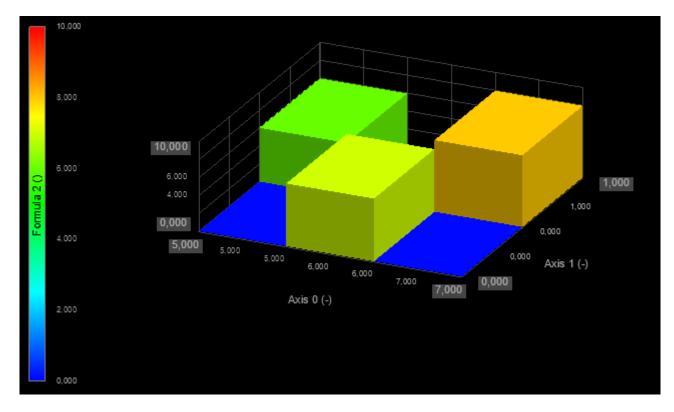
'MatrixChannel	[N][I	[M]
----------------	-------	-----

Note that syntax is not using standard (X,Y) notation but rather (Y,X) in this case. Reason is that array math interprets data like this!

Output	Formula					
Formula 2 V						
Name Formula 2	'Constant 1'					
Description -						
Units - Color						
Preview Values Time axis		_				
Max value 10 -						
	ß					
	Basic operators Search Q	•				
Value 7-	+ - x / AI 1 Constant 1					
	() ^ div mod Formula 2 Sensor serial number Position of the sensor					
	Other math functions Operator name					
Min value 0 -	Functions Trigon. Logic Signals Measure Events Complex Arrays History Ch props					


Formula "Matrix Channel" {N}{M} outputs element from matrix in the position (M,N), where M and N are in positions of axis units.

'MatrixChannel	'{N	{M}
----------------	-----	-----


Output	Formula						
Formula 2 V							
Name Formula 2				'C	onstar	nt 1'	
Description -	com dano_1						
Units Color							
Preview Values Time axis							
Max value 10	'Consta	int_1'{7	{1}			0	
	Basic oper	ators				Search Q	
Value 8-	+	- x	1			AI 1 Constant_1	
	() ^	div	mod		Formula 2 Sensor serial number Position of the sensor	
	Other mat	h functions				Operator name	
Min value 0	Function	s Trigon.	Logic	Signals	Measure		
	Events	Complex	Arrays	History	Ch props		

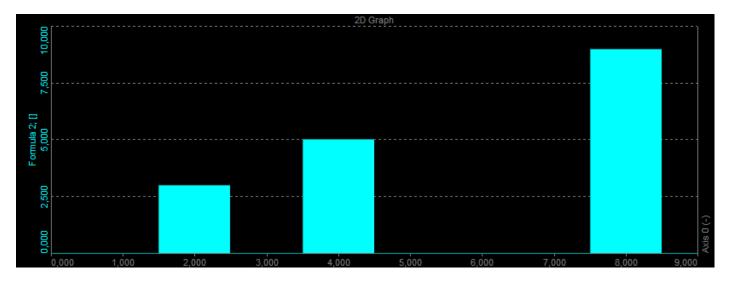
Formula "Matrix Channel" [N:Y][M:X] outputs matrix in defined X and Y intervals.

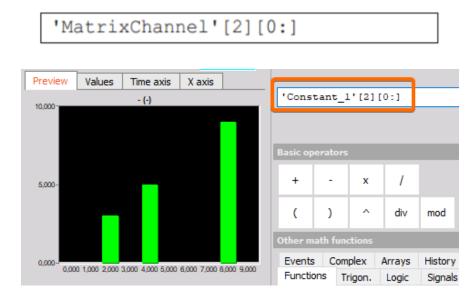
'MatrixChannel'[N:Y][M:X]

The result can be displayed on a 3D graph.

Same syntax logic can be used to output just one line from matrix, for example:

'MatrixChannel'[2][0:len-1]


DEWESoft[®]

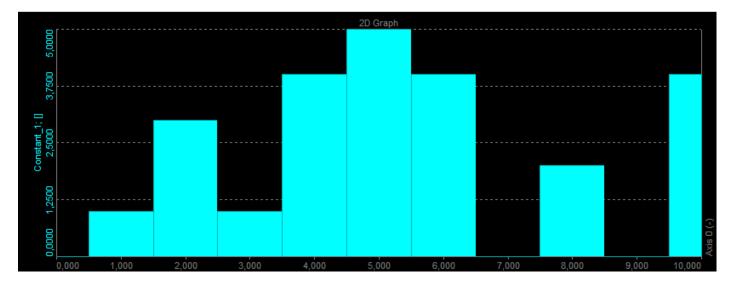


Preview Values Time axis X axis 'Constant_1'[2][0:len-1] - (-) 10,000 Search AI 1 1 + х 5,000-Constant_1 Formula 2 Sensor serial number () ~ div mod Position of the sensor Operator name Other math function Events Complex Arrays History Ch props 0,000 0,000 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 Functions Trigon, Logic Signals Measure

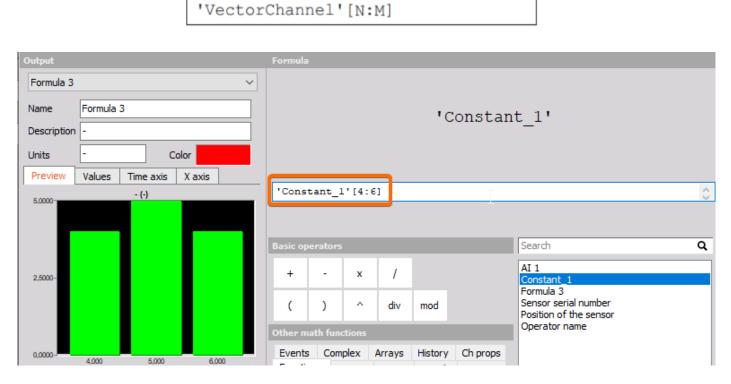
Where **len-1** is a special tag indicating the last element.

One line of matrix is displayed on a 2D graph:

The **len-1** tag can be also omitted, so that the syntax looks like this:


The syntax will output all elements in the third row (first row is zero) of our matrix.

The same logic also applies to vectors. Let's define a vector for this example.


Output							Channels setu	чр				Impor	t/Export data	
Constant_	1				~		Channels					_	ormat	
Name	Constant	• 1					Constant_1	1		~	\mathbf{O}	Clipb	oard	~
Description		_*					\odot					Cop	py Paste	
			- 1				Define values	5						
Units	-		Color				Data structu	ire	Data ty	pe				
Preview	Values	X axis				-	Vector	~	Single		~			
5,0000-		- (-)					Axis 0							
							Values count			Unit	Axis type		Offset	Step
							11	Axis 0		-	Offset/step	\sim	0	1
							Axis 0 (-)	Value						
2,5000-				_			0	0						
							1	1						
							2	3						
0.0000-							3	1						
0,000	2,000	4,000	6,000	8,000	10,000		4	4						
							5	5						
							6	4						
							7	0						
							8	2						
							9	0						
							10	4						

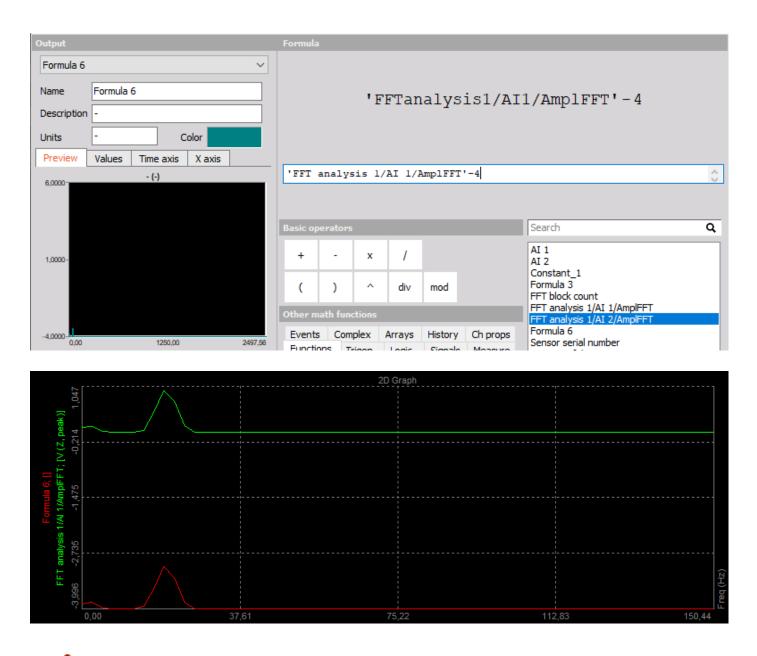
Vectors are displayed on the 2D graph:

The formula "Vector Channel" [N:M] outputs the vector with elements from Nth to Mth element.

Basically, all operations should work on arrays, but there are some limitations to it. We can for example do the following formula, where all elements in the array will be subtracted.

'AIO/AmplFFT' - 'AI1/AmplFFT'

Output		Form	ıla						
Formula 6	~]							
Name	Formula 6	1.51	1		1/77	1 / 7			n n n
Description	•	E I	'FFTanalysis1/AI1/AmplFFT'-'FFTanalysis1/AI2/AmplFFT'						
Units	- Color								
Preview	Values Time axis X axis								
10,000	- (-)	'FFI	analy	sis l/	AI 1/3	AmplFFT	'-'FFT an	alysis 1/AI 2/AmplFFT'	0
		Basic	operators	5				Search	٩
0,000-		+	-	x	1			AI 1 AI 2	
		()	^	div	mod		Constant_1 Formula 3 FFT block count	
		Other	Other math functions FFT analysis 1/AI 1/AmplFFT FFT analysis 1/AI 2/AmplFFT						
-10,000-0,00	1250,00 2497,56	Ever		-	Arrays	History		Formula 6 Sensor serial number	

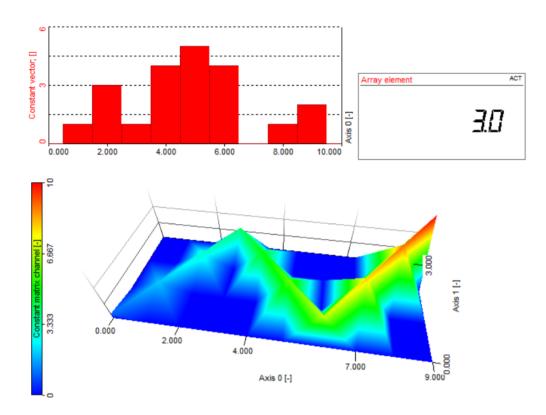


It is important to know that the product of two vectors just multiplies elements in the array! Same rule applies for matrices: DEWESoft math does not calculate "dot product" of two matrices! External applications should be used for that.

We can for example mix the vector and a scalar value:

'AIO/AmplFFT'	+	2
---------------	---	---

This formula will add a value of two to each array element and will output array with the same sizes as the input:



Important: arrays with different sizes cannot be combined into a single formula!

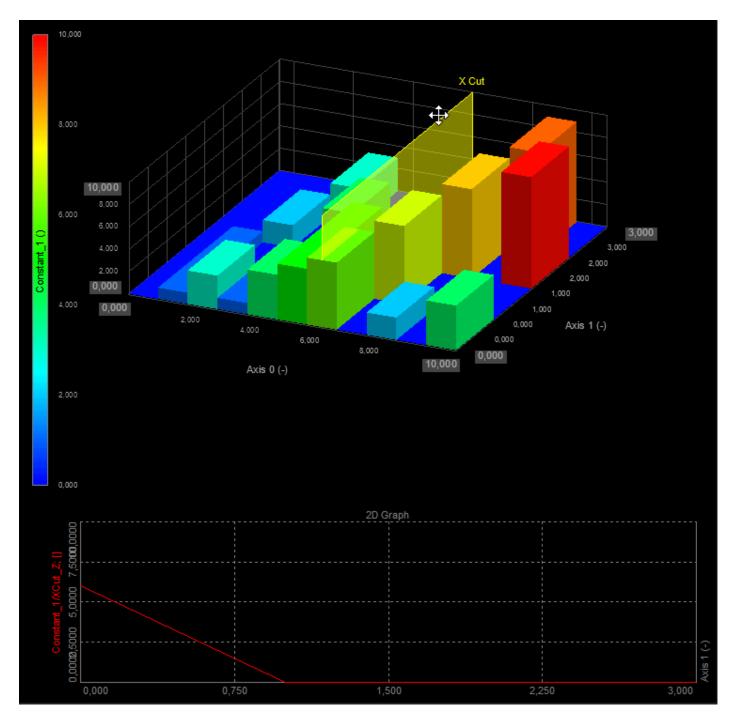
5. Visualization

In the Measure mode, while measuring, we chose **Design mode** and select visual controls that can present our calculated math channels.

Our arrays can be presented on the 2D graph (vectors) and on the 3D graph (matrices). If we output only one element in an array, the number can be displayed on a digital meter.

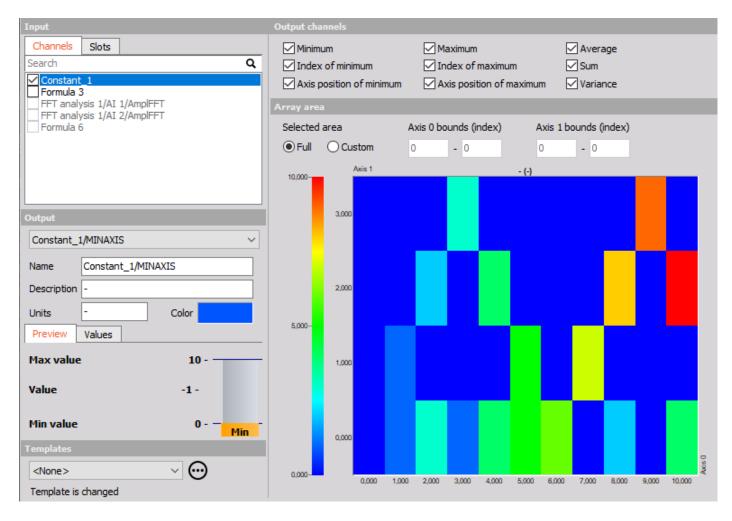
5.1 X and Y cut

There is also a useful shortcut in DEWESoft that enables the visualization of X and Y slice of matrix, without the need of additional math channels:


1) Present your matrix on the 3D graph. Right click on the mouse and select to add X or Y cut.

Cut is displayed on the 3D graph and can be moved freely.

The result of the cut is displayed on 2 graph, as shown below.


The same procedure can be applied to the cut in Y direction.

6. Array statistics

The array statistics can calculate the statistical value from the array. It can be found among other math functions.

x ²				
	+I V			
Add math For	mula IIR filter	r Basic stat.		
array s		8	Add math	Manage favorites

There are several options which can be chosen:

Minimum	If finds the minimum value from the array
Index of minimum	It finds which index of the array holds the minimum value
Axis position of minimum	It finds which position in axis units holds the minimum
Maximum	If finds the maximum value from the array
Index position of maximum	It finds which index of the array holds the maximum value
Axis position of maximum	It finds which position in axis units holds the maximum
Average	Calculates average value of all elements from the array
Sum	Calculates sum of all elements from the array
Variance	Calculates the variance of all elements from the array

Legend

The following symbols and formats will be used throughout the document.

Important

It gives you important information about the subject. Please read carefully!

Hint It gives you a hint or provides additional information about a subject.

Example

Gives you an example of a specific subject.

Warranty information

Notice

The information contained in this document is subject to change without notice.

Note:

Dewesoft d.o.o. shall not be liable for any errors contained in this document. Dewesoft MAKES NO WARRANTIES OF ANY KIND WITH REGARD TO THIS DOCUMENT, WHETHER EXPRESS OR IMPLIED. DEWESOFT SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Dewesoft shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory, in connection with the furnishing of this document or the use of the information in this document.

The copy of the specific warranty terms applicable to your Dewesoft product and replacement parts can be obtained from your local sales and service office. To find a local dealer for your country, please visit <u>https://dewesoft.com/support/distributors</u>.

Calibration

Every instrument needs to be calibrated at regular intervals. The standard norm across nearly every industry is annual calibration. Before your Dewesoft data acquisition system is delivered, it is calibrated. Detailed calibration reports for your Dewesoft system can be requested. We retain them for at least one year, after system delivery.

Support

Dewesoft has a team of people ready to assist you if you have any questions or any technical difficulties regarding the system. For any support please contact your local distributor first or Dewesoft directly.

Dewesoft d.o.o.

Gabrsko 11a 1420 Trbovlje Slovenia

Europe Tel.: +386 356 25 300 Web: <u>http://www.dewesoft.com</u> Email: <u>Support@dewesoft.com</u> The telephone hotline is available Monday to Friday from 07:00 to 16:00 CET (GMT +1:00)

Service/repair

The team of Dewesoft also performs any kinds of repairs to your system to assure a safe and proper operation in the future. For information regarding service and repairs please contact your local distributor first or Dewesoft directly on <u>https://dewesoft.com/support/rma-service</u>.

Restricted Rights

Use Slovenian law for duplication or disclosure. Dewesoft d.o.o. Gabrsko 11a, 1420 Trbovlje, Slovenia / Europe.

Printing History

Version 2.0.0, Revision 217 Released 2015 Last changed: 23. July 2018 at 16:54.

Copyright

Copyright © 2015-2019 Dewesoft d.o.o. This document contains information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws. All trademarks and registered trademarks are acknowledged to be the property of their owners.

Trademarks

We take pride in our products and we take care that all key products and technologies are registered as trademarks all over the world. The Dewesoft name is a registered trademark. Product families (KRYPTON, SIRIUS, DSI, DS-NET) and technologies (DualCoreADC, SuperCounter, GrandView) are registered trademarks as well. When used as the logo or as part of any graphic material, the registered trademark sign is used as a part of the logo. When used in text representing the company, product or technology name, the ® sign is not used. The Dewesoft triangle logo is a registered trademark but the ® sign is not used in the triangle logo.

Documentation version history

Version	Date	Notes
2.0	12.1.2017	Initial version
V21-1	24.09.2021	Updated images, content