
Dewesoft C++ Script
SOFTWARE USER MANUAL
Dewesoft C++ Script V21-1

1

Dewesoft C++ Script
SOFTWARE USER MANUAL

1. Table of contents
1. Table of contents 2

2. About this document 4
2.1. Legend 4

3. What is Dewesoft's C++ Script? 5
3.1. How it works 5
3.2. Installation 5

4. Tutorial: Simple Signal Averaging Module 7
4.1. Step Zero: Creating a new C++ Script 7
4.2. Step One: Project tab 7
4.3. Step Two: Configure tab 8
4.4. Step Three: Code editor tab 11
4.5. Step Four: Published tab 12

5. Small addition to our averaging example 15

6. C++ Script Features 17
6.1. Pre-packaged bundles 17
6.2. Exporting C++ Scripts as stand-alone math modules 17
6.3. Dewesoft::Math::Api::Basic namespace 20
6.4. Published variables 20
6.5. Core variables 21
6.6. Module variables 22
6.7. Module's callInfo structure 22
6.8. Channel types 22
6.9. Input channels 22
6.10. Output channels 23
6.11. Custom C++ Script types 23

6.11.1. bsc::Time type 23
6.11.2. bsc::Scalar type 23
6.11.3. bsc::Vector type 24
6.11.4. bsc::Matrix type 24
6.11.5. Module::calculate()'s sample rate 26

6.12. Channel delays 27
6.12.1. Module class' methods 28
6.12.2. Module::Module() 28
6.12.3. Module::~Module() 28
6.12.4. void Module::configure() 28
6.12.5. void Module::start() 29
6.12.6. void Module::stop() 29
6.12.7. void Module::clear() 29
6.12.8. void Module::calculate() 29

6.13. Debug channel 30

Dewesoft C++ Script V21-1 2/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

6.14. Output channel names 30
6.15. Compiler settings in Code editor 30

6.15.1. Example of using external source files 31
6.15.2. Example of using external libraries 31

6.16. Tips from developers 32

7. Warranty information 33
7.1. Calibration 33
7.2. Support 33
7.3. Service/repair 33
7.4. Restricted Rights 33
7.5. Printing History 34
7.6. Copyright 34
7.7. Trademarks 34

8. Safety instructions 35
8.1. Safety symbols in the manual 35
8.2. General Safety Instructions 35

8.2.1. Environmental Considerations 35
8.2.2. Product End-of-Life Handling 35
8.2.3. System and Components Recycling 35
8.2.4. General safety and hazard warnings for all Dewesoft systems 36

9. Documentation version history 39

Dewesoft C++ Script V21-1 3/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

2. About this document

2.1. Legend

The following symbols and formats will be used throughout the document.

Important
It gives you important information about the subject.
Please read carefully!

Hint
It gives you a hint or provides additional information about a subject.

Example
Gives you an example of a specific subject.

Dewesoft C++ Script V21-1 4/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

3. What is Dewesoft's C++ Script?

C++ Script is Dewesoft's tool for creating custom math modules. It exists as a compromise between
formula's simplicity and full plugins' power, allowing you to write complex Dewesoft math modules with
ease. It can be configured to operate on arbitrarily many input channels and produce arbitrarily many
output channels, all while processing the data with the power of modern C++.

3.1. How it works

C++ Script's data cycle

The way C++ Script works behind the scenes is by taking your C++ code and using MinGW's C++ compiler
to compile it into a DLL. Dewesoft is then able to load this DLL, feed it data from input channels, and
retrieve the processed data into output channels. Because the hard work of supporting all the different
channel types is handled by Dewesoft and C++ Script, all you are left with is a nice abstraction layer in
C++.

3.2. Installation

Since Dewesoft X3 SP6, C++ Script is a first-class citizen of Dewesoft. You can find it under Math, next to
Formula in Formula and scripting section.

Dewesoft C++ Script V21-1 5/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

Location of C++ Script

In case you want to write your own C++ Scripts, you will need DSMinGW installed on your system.
DSMinGW is a package of compilers for C++, that allows you to write and compile C++ Scripts in
Dewesoft. If you didn't select DSMinGW option while installing Dewesoft, you can manually install it
from Dewesoft's webpage https://download.dewesoft.com under Support > Downloads > Developers >
C++ Script (you will need to be logged in to access the Developers download section).

Dewesoft C++ Script V21-1 6/40

https://download.dewesoft.com

Dewesoft C++ Script
SOFTWARE USER MANUAL

4. Tutorial: Simple Signal Averaging Module

To demonstrate both the simplicity and power of the new C++ Script the first part of this manual shows
you how to implement a simple averaging module. At the end of this section you should end up with a
working module which allows you to select a channel to average, and produce an output channel with
averaged values.

Note that the tutorial is only meant to introduce you to the steps required to use the C++ Script and we
will discuss all the different options the module has to offer in detail later on in the manual.

4.1. Step Zero: Creating a new C++ Script

Tutorial is split into 4 steps, which correspond to the tabs at the top of the C++ Script setup form. To start,
create a new C++ Script by clicking the New Setup button in Dewesoft's ribbon menu. Next, click the
Math button and Add Math button which appears underneath it. In the menu that just opened up, find
the section called Forumula and scripting and finally click on C++ Script, which brings up a new C++
Script window.

Creating a new C++ Script

4.2. Step One: Project tab

In the new setup window you are greeted with the Project details tab. Here you are expected to specify
your module name, a brief description of what your module does, and the version of your module.
Proceed by filling out the Project Name field with "Signal averaging module", Description with "Module
performing simple signal averaging." and leave the rest of the fields as they are.

Dewesoft C++ Script V21-1 7/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

Filling out the Project tab

When you are done, click the Configure tab at the top of the setup window.

4.3. Step Two: Configure tab

In the Configure tab, first change the Calculation call from Sample based to Block based. This should
enable the Block size edit field right next to it and fill it with 1000. For now leave it at that number.

Dewesoft C++ Script V21-1 8/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

Changing calculation type to 'block based'

Under the Input channels tab click the (+) button. This brings up a Variable setup form for configuring
your input channel. Leave both fields in Variable name as they are, and Value type as Scalar and Real.
Tick the Synchronous checkbox under Time base. Clicking Apply you should find that the table now has
a single row, containing inp1 in the C++ variable name column and (I) Sync/Async Real Scalar under
Channel type. This means your module is going to have exactly one channel of either synchronous or
asynchronous type as input.

Dewesoft C++ Script V21-1 9/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

Input channel

Under the Output channels tab you will be able to find a 'debug' channel. Ignore it and click the (+)
button again. This brings up a form similar to last, except Time base now needs to be specified exactly.
Set channel's Published name to 'AVG', leave the Value type as Scalar and Real, and set the Timebase
to Asynchronous. Set Expected async rate per second field to the current sample rate of your setup
(found under Analog in tab under Dynamic acquisition rate) divided by 1000; in our case we set the
sampling rate to 10000 to simplify this calculation so the value in this field should be 10000/1000=10.
Clicking apply creates a new row in the table, this time containing out1.

Dewesoft C++ Script V21-1 10/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

Changing output channel's type

Close the variable setup form and get ready to write some code in the Code editor tab!

4.4. Step Three: Code editor tab

In the Code editor tab you can see the main code of your module. Ignoring most of it scroll to the very
bottom to find inline void Module::calculate() function. Fill it in with the following code:

inline void Module::calculate()

{

bsc::Scalar sum = 0.0;

for (int i = 0; i < callInfo.newSamplesCount; ++i)

sum += inp1.getScalar(i);

out1.addScalar(sum / callInfo.newSamplesCount,

callInfo.endBlockTime);

}

The code should be pretty self-explanatory, but to write it out in english, for each Dewesoft call to
calculate we sum all the scalar values in the block of samples from input channel inp1, and write their
average to output channel out1. Since we defined our output channel as asynchronous, we also have to
specify the time of our output sample. For this we simply use the time of the last sample in block, which

Dewesoft C++ Script V21-1 11/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

is automatically set for us in the callInfo.endBlockTime variable. Note that inp1 and out1 correspond to
the default C++ variable name values of input and output channels from Configure tab respectively.

Code editor tab

Hint
Click on the Structure view bar on the right-hand side of the code editor to bring up the tree of
all structures Dewesoft has made available for you. By expanding nodes you will be able to find
callInfo.endBlockTime, inp1 and out1 with their respective methods for reading and writing
from the channels, as well as some other variables and methods we didn't mention. Note that

elements in the tree view can be double-clicked to populate them in the code editor.

With that we can move on to the last tab.

4.5. Step Four: Published tab

The user interface in the Published tab should look relatively familiar, as it tries to mimic other math
modules found throughout Dewesoft. It should also make it a bit more clear what you were doing in the
Configure tab: on the left hand side you have a list of synchronous input channels, which was the type
of our input channel. Ticking the checkbox next to any of the channels will create a Math object with a

Dewesoft C++ Script V21-1 12/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

single asynchronous output channel (in addition to the default 'debug' channel), which corresponds to
our output channel AVG.

To test your new module, tick one (or more) channels in the Input list and click the OK button at the very
bottom of the setup form. Initiate Dewesoft's measurement mode by clicking on Measure tab and
observe your channel with averaged input signal.

Final settings

Dewesoft C++ Script V21-1 13/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

Measurement

Dewesoft C++ Script V21-1 14/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

5. Small addition to our averaging example

We have now created a module performing averaging of an input signal, but it has some real
deficiencies: the most glaring one being that the size of block for averaging is fixed at 1000 samples.
Let's refactor this into a variable on the Published tab meaning the user will be able to simply open our
module up and set it to whichever value he desires.

Adding a published variable for controlling the block size

To do that, navigate to Configure tab, go to Published variables tab, and click on (+). In the popup form
set Variable type to Integer, C++ variable name to "blockSize", Published name to "Block Size", Default
value to "1000" and Unit to "Samples". Under Numerical Settings set Minimum to "1" and Maximum to
"10000". Click Apply and move to Code editor tab, where you need to change the inline void
Module::configure() function to look like this:

inline void Module::configure()

{

blockSizeInSamples = published.blockSize;

out1.expectedAsyncRate = bsc::core.acqSampleRate / blockSizeInSamples;

Dewesoft C++ Script V21-1 15/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

}

With these changes the block size is going to be dynamically determined by the user, and the expected
async rate of our output channel will be automatically set correctly regardless of the Dewesoft's
acquisition sample rate. Note that, since we used callInfo.newSamplesCount in the for loop inside
Module::calculate(), we do not need to touch the rest of the code for it to work as we want it to.

Move on to the Published tab where you will now be able to find a new field under Settings, containing
our Block Size as defined in Configure tab and try playing around with different values!

Final settings

Dewesoft C++ Script V21-1 16/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

6. C++ Script Features

The tutorial hopefully demonstrated the most basic features of the C++ Script. In the rest of the manual
we present all the features of the C++ Script in detail.

6.1. Pre-packaged bundles

A good way to learn about C++ Script is to study pre-made examples, so we have prepared a selection of
so-called bundles which you can download from the developer downloads section of our website,
https://www.dewesoft.com/developers. To see the bundles in the Project tab of the C++ Script's setup
form (under Bundles panel), follow the README instructions inside the zip file.

Clicking on any of these bundles in the Bundles panel will populate the Selected bundle details area
with the details about the selected item, which can give you a better idea about what the bundle
contains. Double-clicking any item irreversibly clears your current C++ Script and populates it with
bundle's contents for you to explore and experiment with.

There is nothing special about these bundles -- in fact, they are bundles created with C++ Script itself by
clicking on the Export bundle... button from the Bundle option in the main menu. C++ Script's Bundles
explorer searches for all the bundle files found within Dewesoft's Scripts\Cpp\ directory, which is also the
default export directory. You can also import a bundle located in some different directory by clicking on
the Import bundle... menu option and locating it manually.

6.2. Exporting C++ Scripts as stand-alone math modules

The C++ Scipts can be exported as a standalone bundles. The bundle will contain the settings necessary
to create the setup forms for the end user as well as precompiled DLL binaries, meaning end-user of the
module will not need to have DSMinGW installed on their machine to use the script.

Since bundles are self-contained, you can also put them into Dewesoft's bin\addons\ folder, and they will
appear in Dewesoft as regular, built in math modules under Custom C++ Scripts. In this case, the first
line of the Description field in Project tab will appear as the description when the user hovers over the
module in Add math menu.

By clicking on Export bundle... button C++ Script will create a self-contained bundle. The Export bundle
settings has an option to Export as upgrade of existing bundle with the ability to search for an existing
bundle and an option to write a new bundle version. When exporting a bundle without Export as
upgrade of existing enabled the exported bundle is always treated as a completely new plugin and
existing setups, that contain the previous version of this plugin, will not properly work with the newly
exported plugin.

Dialog also lets you specify one of three ways to export your bundle:
● Open source: bundle is exported with the source code included. When such a bundle is imported

via Import bundle... button, the user will have access to all 4 tabs in C++ Script.
● Freeware: bundle is exported without the source code. When such a bundle is imported via

Import bundle... button, the user will only have access to the Published tab. Be careful, as there
is no way to recover the source code from a Freeware bundle.

Dewesoft C++ Script V21-1 17/40

https://www.dewesoft.com/developers

Dewesoft C++ Script
SOFTWARE USER MANUAL

● Proprietary: enables the locking mechanism and expands the form to enable adding multiple
serial numbers. With a new grid there is an option to add specific serial numbers of devices to
lock the bundle. On the left side there is a list box which is populated with serial numbers of
currently connected devices. There are two locking mechanisms: Automatic and Manual from
code.

○ The Automatic locking: works the same like it does for other plugins and maths - this
means no additional work for the programmer. During the global licensing check there is
an additional step to check for the existence of valid serial numbers.

○ The Manual from code locking: enables the bundle to be visible regardless of the HW
connected to the Dewesoft, but can be controlled from the code with
bsc::core.isRunningOnLicensedHardware boolean.

Hint
The Motherboard serial number differs from the Serial number of the device and the
Motherboard serial number should not be used for locking a bundle.

Export bundle settings dialog

Exporting a bundle as an upgrade is also useful when serial numbers, that a bundle should be locked to,
are not known in advance. When upgrading an existing bundle additional serial numbers can be added
and the old .cbu bundle file, in the addons folder, can be replaced with the newly exported one and all
previously created setups should work.

Dewesoft C++ Script V21-1 18/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

Proprietary bundle type with bundle locking options

To lock a bundle from within the code use the code:

inline void Module::calculate()

{

// Procedure which gets called repeatedly whenever DEWESoft has exactly "Block size"

// (or 1, in sample based mode) number of new samples in input channels.

if (!bsc::core.isRunningOnLicensedHardware && callInfo.startBlockTime > 10.0)

return 0;

// custom CPP code

}

With the above code the custom CPP code will only be executed when connected to the devices with
supported serial number, and will not be executed after 10 seconds otherwise.

Dewesoft C++ Script V21-1 19/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

Exported script from start of manual

Users of such bundles will always only have access to Published tab, meaning they will be able to
change only the settings creator of the script decided to expose on that tab, regardless of whether the
bundle was exported as Open source or Freeware.

Dewesoft C++ Script V21-1 20/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

Signal averaging module as stand-alone math

6.3. Dewesoft::Math::Api::Basic namespace

All C++ Script's types and some of its structures reside in the Dewesoft::Math::Api::Basic namespace.
For brevity reasons this manual uses bsc as the alias for this namespace, and, as typing out the entire
namespace every time you need to access it can be a chore, the very top of the template in a fresh C++
Script module contains the following line:

namespace bsc = Dewesoft::Math::Api::Basic;

6.4. Published variables

Inside Configure tab under Published variables you can define various different types of variables. The
main idea behind defining the variables here instead of directly in your C++ code is that these variables
are accessible from the Published tab and changing their values there does not require recompiling the
code.

Creating a variable by clicking on the (+) button will bring up a form asking you to specify the type of the
variable and some of its basic features. The field C++ variable name specifies the name with which you
will be able to access the variable from within C++ code, where the variable will be stored inside a special
published structure. The Published name field specifies what the variable will be named in the

Dewesoft C++ Script V21-1 21/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

Published tab. Other fields are mostly dependent on the type of variable you select, but should be
relatively self-explanatory.

Inside the C++ code these variables are at all times read-only and are set before any of the Module
methods are called by Dewesoft. The following table shows the connection between selected variable
types and the types of created variables in C++ code:

Variable type C++ counterpart

Boolean bool

Integer int

Float double

Enumeration enum

String std::string

File name std::string

When it comes to File name variables, there is a special rule: the end-user can on Published tab specify
the path to file either as:

● absolute, in which case the absolute path is always used; or
● relative, in which case C++ Script will transform the path to absolute by:

○ prepending it with the location of current setup file if the setup is saved; or
○ prepending it with the location of Dewesoft's setup folder, as defined in Options >

Settings > Files and folders > Default folder for setup files.

6.5. Core variables

bsc::core structure contains 2 read-only variables:
● double bsc::core.acqSampleRate: acquisition sample rate Dewesoft is currently running with.

This is set to the correct value before the call to Module::configure(); and
● double bsc::core.absoluteTimeAtStart: POSIX time at the start of measurement/storing. Integral

part of the number represents the number of seconds elapsed since 00:00:00 Thursday, 1 January
1970 in UTC time, and the fractional part represents the number of milliseconds. This variable is
only set to the correct value after the call to Module::start(). Note that Dewesoft uses a different
time format, as described on this link:
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TDateTime. To convert from POSIX time
to Dewesoft time you will need to use the following equality:

Dewesoft = POSIX / (24 * 60 * 60) + 25569,

where 24*60*60 is the number of seconds in a day, and 25569 is the difference in seconds
between the starts of POSIX and Dewesoft times.

Dewesoft C++ Script V21-1 22/40

http://docwiki.embarcadero.com/Libraries/Rio/en/System.TDateTime

Dewesoft C++ Script
SOFTWARE USER MANUAL

6.6. Module variables

Module itself contains 4 variables (alongside callInfo structure):
● int moduleIndex: the index of current module, where first module has moduleIndex = 0, second

moduleIndex = 1, and so on;
● int pastSamplesRequiredForCalculation: number of additional samples from past passed to

input channels;
● int futureSamplesRequiredForCalculation: number of additional samples from future passed to

input channels.
● int blockSizeInSamples: number of new samples in input channels for each call to

Module::calculate().

For further explanation of pastSamplesRequiredForCalculation and
futureSamplesRequiredForCalculation variables refer to section Channel delays.

6.7. Module's callInfo structure

Module's callInfo structure contains 4 read-only variables, which get updated before each call to
Module::calculate() with the latest values:

● int64_t bsc::core.sampleCountSinceStart: number of samples acquired since start of
measurement;

● int callInfo.newSamplesCount: number of new samples in input channels;
● bsc::Time callInfo.startBlockTime: time in seconds of the first new sample in input channels;
● bsc::Time callInfo.endBlockTime: time in seconds of the last new sample in input channels.

6.8. Channel types

C++ Script supports various different channel types found throughout Dewesoft. The channels can be
split in 3 different ways: according to channel time base (single value, synchronous, asynchronous),
channel value type (scalar, vector, matrix), and channel type itself (input, output).

Note that synchronous channels with sample rate divider other than 1 are currently unsupported in all
forms.

6.9. Input channels

For input channels you can retrieve the value of i-th sample in the block by using getScalar(i) (or,
getVector(i) for vector value type channels, or getMatrix(i) for matrix value type channels). Similarly
you can retrieve the time stamp of the i-th sample by using channel's getTime(i) member function. If
the calculation type is sample based parameter i can be omitted, as there is always exactly one sample
in the input channel.

In case you set pastSamplesRequiredForCalculation (refer to section void Module::configure()), input
channels will also contain exactly that many samples from past, which you can access by using negative
indices. Similarly for futureSamplesRequiredForCalculation the input channels will contain this many
additional samples from future, which can be accessed with indices i ≥ callInfo.newSamplesCount. Refer
to section Channel delays for further explanation.

Dewesoft C++ Script V21-1 23/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

In the background, bsc::Scalar type is simply an alias for type double, while bsc::Vector and
bsc::Matrix types are custom types as described in sections bsc::Vector type and bsc::Matrix type.

For channels with vector and matrix value type you can access their dimensions via channel's axes
member; i.e. to access the vector dimensions of a channel you can use axes[0].size(), and for matrix
axes[d].size(), d ∈ {0,1} for d-th dimension. Aside from the dimension size, the axes structure's
elements also contains individual axis name, unit, and values.

6.10. Output channels

To add samples to output channels you can use the channel's addScalar(const Scalar& value,

bsc::Time time) function (or, addVector(const Vector& value, bsc::Time time) for vector value type
channels, or addMatrix(const Matrix& value, bsc::Time time) for matrix value type channels). Note
that if the timebase of your output channel is synchronous, you are expected to output exactly
callInfo.newSamplesCount number of samples per function call. Additionally, for synchronous and single
value timebase channels the time argument in the function call can be omitted, as it is implied.

Important: output channels with synchronous or asynchronous timebase need to have samples added
in strictly ascending order by time.

When adding an output channel with asynchronous timebase you will be asked to specify expected
async rate per second value. This should be an approximate (within an order of magnitude) rate at
which you will be adding samples to the channel. Specifying too big of a number means Dewesoft will
allocate too much memory, but specifying too small of a number means the samples will get lost. Since
this setting will likely depend on Dewesoft's sample rate, you can also set channel's expected async rate
per second at runtime by modifying channel's expectedAsyncRate variable in Module::configure()

function. Refer to void Module::configure() for more details.

For channels with vector and matrix value types can also change the dimensions by modifying axes
structure in the Module::configure() function call. Again, refer to void Module::configure() for more
details.

Note that any inf and nan values in the output channels do not trigger an exception, but instead get
automatically changed to 0.

6.11. Custom C++ Script types

This section contains description of types defined and used throughout Dewesoft C++ Script's c++ code.

6.11.1. bsc::Time type
bsc::Time type is an alias for type double, used to denote time in seconds.

6.11.2. bsc::Scalar type

Dewesoft C++ Script V21-1 24/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

bsc::Scalar type is an alias for type double, while bsc::ComplexScalar is an alias for type
std::complex<double>.

6.11.3. bsc::Vector type
Input and output channels with vector value type operate via bsc::Vector (or, bsc::ComplexVector for
complex values) types. The following are bsc::Vector's operations:

● Construct new vector V with V(size) OR V = initializer_list

// Example:

bsc::Vector V = {1, 2, 3}; // vector of 3 elements

bsc::Vector V(3); // vector with 3 zeros

● Copy vector V into vector V2

// Example:

bsc::Vector V2 = V;

bsc::Vector V2(V);

● Access vector V's elements with V[i] (zero-based indexing)

// Example:

V[1] = 10.0; // set second element in vector V to value 10.0

bsc::Scalar u = V[3]; // set u to value of V's fourth element

● Retrieve number of elements of vector V with V.size()

// Example:

bsc::Vector V(3);

int i = V.size(); // i will become 3 as V has 3 elements

Same operations are available for bsc::ComplexVector (simply replace bsc::Vector and bsc::Scalar with
bsc::ComplexVector and bsc::ComplexScalar respectively in the list above).

Expert note: behind the scenes, vector V is a wrapper for an 1-d array with M.size() elements (where
element is either of type double in case of real vectors, or std::complex<double> in case of complex
vectors). You can access the underlying array directly via M.data() method, which returns the pointer to
the first element of the array.

6.11.4. bsc::Matrix type
Input and output channels with matrix value type operate via bsc::Matrix (or, bsc::ComplexMatrix for
complex values) types. The following are bsc::Matrix's operations:

● Construct new matrix M with M(rows, columns) OR M = initializer_list

Dewesoft C++ Script V21-1 25/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

// Example:

bsc::Matrix M = {{1, 2, 3}, // matrix of 2 rows by 3 columns

{4, 5, 6}}; // with specified initial elements

bsc::Matrix M(2, 3); // 2 by 3 matrix of zeros

● Copy matrix M into matrix M2

// Example:

bsc::Matrix M2 = M;

bsc::Matrix M2(M);

● Access matrix M's elements with M[row][column] (zero-based indexing)

// Example:

M[0][1] = 10.0; // set element in row 0 column 1 to value 10.0

bsc::Scalar v = M[3][2]; // set v to value in row 3 column 2

● Retrieve number of rows of matrix M with M.m()

// Example:

bsc::Matrix M(2, 3);

int i = M.m(); // i will become 2 as M has 2 rows

● Retrieve number of columns of matrix M with M.n()

// Example:

bsc::Matrix M(2, 3);

int j = M.n(); // j will become 3 as M has 3 columns

Same operations are available for bsc::ComplexMatrix (simply replace bsc::Matrix and bsc::Scalar with
bsc::ComplexMatrix and bsc::ComplexScalar respectively in the list above).

Expert note 1: behind the scenes, matrix M is stored as an 1-d array with M.m() ⋅ M.n() elements, in
column-major order (where element is either of type double in case of real matrices, or
std::complex<double> in case of complex matrices). You can access the underlying array directly via
M.data() method, which returns the pointer to the first element of the array, and M.size() method to
retrieve its length (which always equals M.m() ⋅ M.n()).

Expert note 2: for faster access to elements you can use M(row, column) (for which M[row][column] is just
syntactic sugar), which might be faster as it avoids generating intermediate object created by M[row].
For consistency sake a similar syntactic sugar (with no performance gain) is available for bsc::Vector,
with V(i) being equivalent to V[i].

Dewesoft C++ Script V21-1 26/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

6.11.5. Module::calculate()'s sample rate
The timebases of input and output channels of each individual Module will determine the rate at which
Module::calculate() function gets called. Here are the rules:

● if any one of output channels is a synchronous channel, you can not specify vector or matrix input
channels, and every input channel will be resampled to synchronous rate.

● if none of the output channels are synchronous, the first input channel will be taken as master
channel and every other input channel will be resampled to its time base:

○ if the first input channel is synchronous, all the input channels shall be resampled to a
synchronous timebase.

○ if the first input channel has asynchronous timebase, all the input channels shall be
resampled to its timebase.

○ if the first input channel has a single value timebase, Module::calculate() function will
be called every time its value could potentially be changed. In this case the calculation
ignores calculation type as there is only ever going to be exactly 1 new sample in input
channels.

Wherever we say 'resampled' in the list above we mean linear resampling if the interpolate channel
values check box is ticked in channel's setup form, otherwise Dewesoft will take the closest last available
value from the channel.

Dewesoft C++ Script V21-1 27/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

6.12. Channel delays

In case your calculation requires past and future samples from channel (e.g. say you are implementing
FIR filter or custom resamplers), you can set pastSamplesRequiredForCalculation and
futureSamplesRequiredForCalculation inside Module::configure() to number of samples required on
each end. With this setting your input channels then contain this many additional samples per call to
Module::calculate().

To better explain this let's consider an example where we are using Block based calculation type with
block size equal to 3 and we set pastSamplesRequiredForCalculation to 2 and
futureSamplesRequiredForCalculation to 3 inside Module::configure() function. Let's pretend that the
following figure shows our input signal (with x axis representing time and black dots marking the
individual samples):

Then, the following 4 figures show which samples are set in input channel for 4 successive calls of
Module::calculate():

The numbers below the samples show valid i parameters for querying samples from the input channel
(via get[value type](i) and getTime(i) functions) and orange dots represent samples which would
get set regardless of the pastSamplesRequiredForCalculation and futureSamplesRequiredForCalculation

setting. This means that valid i for retrieving samples lies on the closed interval
[-pastSamplesRequiredForCalculation,
callInfo.newSamplesCount-1+futureSamplesRequiredForCalculation].

Dewesoft C++ Script V21-1 28/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

You can see that despite the fact that we are processing 8 samples per call to Module::calculate(), we
are still expected to only output 3 samples in case our output channel is synchronous (at timestamps of
orange samples), and that channel only advances by block size number of samples at once, so some
samples are sent to the function multiple times.

Note that you can think of Sample based calculation type to be just a special case of Block based
calculation type with block size equal to 1.

6.12.1. Module class' methods
Your C++ Script interacts with Dewesoft by letting it invoke certain methods of your implemented
Module's code (all of which come pre-populated in the C++ Script's code editor by default). What follows
is a brief description of each of the methods.

6.12.2. Module::Module()
Module::Module() function gets called exactly once whenever your module is created. It is guaranteed
that variables in the published structure are set to their correct values before the module is created, but
other variables (eg. variables in core structure, blockSizeInSamples, channel properties, ...) are not. As
such this procedure is perfect for starting any slower jobs, reading data from files, etc.

6.12.3. Module::~Module()
For each Module::Module() function call there is a guaranteed corresponding call to Module::~Module()

whenever your module is destroyed. This happens for example when Dewesoft is closed, when another
setup is loaded, or when your module gets removed. This gives you an opportunity to clean up anything
done in Module::Module(), for example releasing locks on files, closing libraries, etc.

6.12.4. void Module::configure()
Inside Module::configure() function you can modify properties of your output channels and manually
set calculation type/block size and delays. Note that after the Module::configure() call you should not
further modify these values. Also note that Module::configure() may get called multiple times before
the start of measurement.

The following is a list of things Dewesoft looks at after Module::configure() call is over:
● asynchronous output channels' expectedAsyncRate: if your module contains asynchronous output

channels, you can set their expected rate per second by modifying their expectedAsyncRate
member. This can be useful if you want to make asynchronous channels work regardless of
Dewesoft's sample rate, for example by setting the value to bsc::core.acqSampleRate /

blockSizeInSamples if you plan to output one sample per block of samples. Another useful case
can be if you know the rate of your output channel is somehow going to be connected to the rate
of some other input channel I, in which case you can simply set the expectedAsyncRate to
I.expectedAsyncRate.

Dewesoft C++ Script V21-1 29/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

● output channels' enabled: for each output channel you can decide to disable it and hide it from
the end user. This can be useful if you want to disable channels based on some user-selected
option in the Published tab.

● output channels' unit: for each output channel you can set its unit, since it might depend on
input channels' units (which you can access via their own unit field).

● vector/matrix output channels' axes: if your module contains vector or matrix output channels,
you can also change their dimensions and axis information here. You can do that by modifying
the channel's axis data, more specifically setting the axis[d]'s name (of type std::string), unit
(of type std::string), and values (of type bsc::Vector) fields, where d ∈ {0} if channel is a vector
channel, and d ∈ {0,1} if channel is a matrix channel. Before the call to Module::configure() the
values vector gets initialized to {1, 2, …, n_d} where n_d is the dimension size you specified in the
Variable setup tab. The size of output channel's d-th dimension at the end of
Module::configure() is equal to the number of elements in axes[d].values vector.

● blockSizeInSamples: if you want to manually change calculation type/block size, setting this
variable to 1 is equivalent to setting calculation type to Sample based, and any number greater
than 1 to Block based with Block Size value equal to it.

● pastSamplesRequiredForCalculation: refer to section Channel delays.
● futureSamplesRequiredForCalculation: refer to section Channel delays.

If you choose to not modify any of the values inside Module::configure() form, they take on the default
values as set in Configure tab.

6.12.5. void Module::start()
Module::start() function gets called at the very start of measurement, and is guaranteed to be called
after Module::Module() and void Module::configure(). It should be used for lightweight tasks such as
initializing your variables.

6.12.6. void Module::stop()
For each Module::start() function call there is a guaranteed corresponding call to Module::stop() at the
end of measurement, giving you opportunity to clean up; for example to free memory allocated in the
Module::start() call.

6.12.7. void Module::clear()
Module::clear() function gets called whenever Dewesoft clears the data from its channels. This occurs
when you start storing the data and might be useful eg. for resetting intermediate values from your
calculations.

6.12.8. void Module::calculate()
Module::calculate() function gets called repeatedly during the measurement mode. Before each call,
the Dewesoft populates input channels with
pastSamplesRequiredForCalculation+callInfo.newSamplesCount+futureSamplesRequiredForCalculatio
n number of samples. This is where you can obtain the samples from input channels (refer to section

Dewesoft C++ Script V21-1 30/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

Input channels), process them, and depending on the sample rate (refer to section Module::calculate()'s
sample rate) and output channel types (refer to section Channel types) add samples to output channels.

6.13. Debug channel

To aid with the development of your C++ Script a special debug output channel (of type asynchronous
string) is enabled by default whenever you create a new script. With this debug channel you can use a
special void OutputDebugString(const std::string& message, bsc::Time timestamp) function to
output arbitrary string messages to it. On top of this the debug channel will also contain any exceptions
thrown from inside your Module::calculate() function.

To see these messages in measurement mode, add a Digital meter visual control to your display and
bind the debug channel to it. Note that since the debug channel is an asynchronous channel, you will
need to properly specify the expected async rate per second value (refer to section Output channels)
either in channel's setup or by setting debug.expectedAsyncRate to appropriate value in
Module::configure() in your c++ code.

When you are done developing your module, you can easily remove the debug channel by unticking the
checkbox in Configure's extra tab.

6.14. Output channel names

By default, C++ Script prepends output channel names with the names of input channels the output
channels depend on. This might sometimes prove to be undesirable, as the names of such channels can
get really long, especially if the script has multiple input channels; e.g.: 'input 1, input 2, input 3/output 1'.
For such reason the checkbox Do not prefix output channel names with corresponding input channel
names found in Extra tab under Configure can be toggled to turn off prepending of input channel
names.

6.15. Compiler settings in Code editor

While C++ Script is primarily intended to be used for light scripting, sometimes we would want to use
functionality implemented by external libraries or files. For this reason C++ Script exposes the compiler
flags, with which you can control which libraries or other source files are included during the
compilation of C++ Script.

You can access compiler settings via Code editor tab, by clicking the Compiler settings button in the
editor toolbar. This opens a form where user can specify the following compiler options (in parenthesis
are the compiler flags used for g++ compiler):

● Include directories (-I): used for specifying which directories the compiler will look into when
searching for include files.

● Source files: used for specifying additional source files.
● Linker directories (-L): used for specifying which directories the linker will search when looking

for libraries specified under Linker files.
● Linker files (-l): used to specify additional libraries for the linker. Libraries should be specified

without the extension (e.g. for "mylib.dll" you should only add "mylib" as the flag).

Dewesoft C++ Script V21-1 31/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

● Compiler flags: used for specifying any additional compiler flags. These are added to the compile
command as-is.

You can use (+) button to add a new flag/file/directory, or (...) button whenever available to browse your
filesystem for files/directories.

Wherever the compiler flags takes a file path, the same rules as described in Published variables section
apply when resolving. In other words you can use relative paths for compiler commands, which might
simplify copying the setups between computers.

For all the flags, a special token can be used to differentiate between the 32 and 64 bit compilers:
$(ARCH) gets replaced by empty string when 32 bit compiler is used, and string "64" with 64 bit compiler.
For example, adding "mylib$(ARCH)" under linker files gets transformed into "mylib" with 32 bit compiler
and into "mylib64" with 64 bit compiler.

Note that in order to export the bundle on Project tab both the 32 bit and 64 bit compilers must
successfully compile the code. Also note that when exporting the bundle, any additional libraries or
source files are not included in the bundle, meaning you will need to manually copy-paste them if you
plan to continue development of the bundles on other computers.

Clicking Show compiler command also shows the exact command line command that gets executed
every time C++ Script is recompiled, which might help the user figure out why compiling fails.

6.15.1. Example of using external source files
Say we have a header and source files "C:\Dewesoft\MyLibrary\include\mylib.h" and
"C:\Dewesoft\MyLibrary\src\mylib.cpp" we want to use in our C++ Script. To use them, we would need to
add C:\Dewesoft\MyLibrary\include under Include directories and C:\Dewesoft\MyLibrary\src\mylib.cpp
under Source files. In the Editor we can then add #include "mylib.h" command to the top of the code,
and use any functions defined in the included files.

6.15.2. Example of using external libraries
Say we have a library "C:\Dewesoft\MyLibrary\mylib.dll" with the accompanying header file at
"C:\Dewesoft\MyLibrary\include\mylib.h". In this case we would need to add C:\Dewesoft\MyLibrary under
Linker directories, and mylib under Linker files. To actually use the library we also need to add #include
"mylib.h" at the top of the source code in Editor, and since we are using an include directive, we also
need to tell compiler where to find the specified header file, which we do by adding
C:\Dewesoft\MyLibrary\include to Include directories.

Note again that if we wanted to export the bundle, both 32 and 64 bit compilers would have to succeed
in compiling our script, but with current configuration this could possibly fail. To solve this issue we can
use 2 libraries: "C:\Dewesoft\MyLibrary\mylib.dll" for 32 bit library and "C:\Dewesoft\MyLibrary\mylib64.dll"
for the 64 bit version. Then we would change the flag in Linker files to mylib$(ARCH), meaning the 32
bit compiler will still use mylib.dll, while the 64 bit compiler will use the mylib64.dll, solving our problem.

Dewesoft C++ Script V21-1 32/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

6.16. Tips from developers

Here we share some tips which might prove useful during development of your C++ Script module:
● If you can, set Dewesoft's acquisition sample rate to a low number, for example 500 or 1000 Hz.
● Save your setups often, especially before testing them in Measurement mode.
● Add a Digital meter visual control in the Measurement mode and attach the default Debug

Channel to it as soon as you start developing your module; it can save you a lot of headaches.
● For vector / matrix input channels, getVector(i) / getMatrix(i) operations are slow, especially if

you don't plan to access all the elements in the retrieved vector / matrix (e.g. I.getVector(i)[j]).
If you can, create a local variable of type bsc::Vector / bsc::Matrix and assign the vector /
matrix to it, limiting the getVector(i) / getMatrix(i) calls to at most one per
Module::calculate() call.

● When you are outputting samples to your asynchronous output channel O with the same
sample rate as some input asynchronous channel I, you don't have to manually calculate its
expectedAsyncRate; simply set it to that input channel's expectedAsyncRate in the
Module::configure() function like so:

O.expectedAsyncRate = I.expectedAsyncRate;

● Resizing the axis of a vector output channel VO to eg. 21 can be achieved with the following
pattern inside Module::configure():

VO.axes[0].values = bsc::Vector(21);

for (int i = 0; i < 21; ++i)

VO.axes[0].values[i] = i;

● Looping over all samples contained in input channels when you have
pastSamplesRequiredForCalculation and futureSamplesRequiredForCalculation specified should
look something like this:

for (int i = -pastSamplesRequiredForCalculation;

i < callInfo.newSamplesCount + futureSamplesRequiredForCalculation;

++i)

{

bsc::Scalar v = inp1.getScalar(i);

bsc::Time t = inp1.getTime(i);

// your code

}

Dewesoft C++ Script V21-1 33/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

7. Warranty information

Notice
The information contained in this document is subject to change without notice.

Note:
Dewesoft d.o.o. shall not be liable for any errors contained in this document. Dewesoft MAKES NO
WARRANTIES OF ANY KIND WITH REGARD TO THIS DOCUMENT, WHETHER EXPRESS OR IMPLIED.
DEWESOFT SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Dewesoft shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal theory, in connection with
the furnishing of this document or the use of the information in this document.

The copy of the specific warranty terms applicable to your Dewesoft product and replacement parts can
be obtained from your local sales and service office. To find a local dealer for your country, please visit
https://dewesoft.com/support/distributors.

7.1. Calibration
Every instrument needs to be calibrated at regular intervals. The standard norm across nearly every
industry is annual calibration. Before your Dewesoft data acquisition system is delivered, it is calibrated.
Detailed calibration reports for your Dewesoft system can be requested. We retain them for at least one
year, after system delivery.

7.2. Support
Dewesoft has a team of people ready to assist you if you have any questions or any technical difficulties
regarding the system. For any support please contact your local distributor first or Dewesoft directly.

Dewesoft d.o.o.
Gabrsko 11a
1420 Trbovlje Slovenia

Europe Tel.: +386 356 25 300
Web: http://www.dewesoft.com
Email: Support@dewesoft.com
The telephone hotline is available Monday to Friday from 07:00 to 16:00 CET (GMT +1:00)

7.3. Service/repair
The team of Dewesoft also performs any kinds of repairs to your system to assure a safe and proper
operation in the future. For information regarding service and repairs please contact your local
distributor first or Dewesoft directly on https://dewesoft.com/support/rma-service.

7.4. Restricted Rights
Use Slovenian law for duplication or disclosure. Dewesoft d.o.o. Gabrsko 11a, 1420 Trbovlje, Slovenia /
Europe.

Dewesoft C++ Script V21-1 34/40

https://dewesoft.com/support/distributors
http://www.dewesoft.com
mailto:Support@dewesoft.com
https://dewesoft.com/support/rma-service

Dewesoft C++ Script
SOFTWARE USER MANUAL

7.5. Printing History
Version 2.0.0, Revision 217 Released 2015 Last changed: 23. July 2018 at 16:54.

7.6. Copyright
Copyright © 2015-2019 Dewesoft d.o.o. This document contains information which is protected by
copyright. All rights are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws. All trademarks and registered
trademarks are acknowledged to be the property of their owners.

7.7. Trademarks
We take pride in our products and we take care that all key products and technologies are registered as
trademarks all over the world. The Dewesoft name is a registered trademark. Product families
(KRYPTON, SIRIUS, DSI, DS-NET) and technologies (DualCoreADC, SuperCounter, GrandView) are
registered trademarks as well. When used as the logo or as part of any graphic material, the registered
trademark sign is used as a part of the logo. When used in text representing the company, product or
technology name, the ® sign is not used. The Dewesoft triangle logo is a registered trademark but the ®
sign is not used in the visual representation of the triangle logo.

Dewesoft C++ Script V21-1 35/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

8. Safety instructions
Your safety is our primary concern! Please be safe!

8.1. Safety symbols in the manual

Warning
Calls attention to a procedure, practice, or condition that could cause the body injury or death

Caution
Calls attention to a procedure, practice, or condition that could possibly cause damage to
equipment or permanent loss of data.

8.2. General Safety Instructions

Warning

The following general safety precautions must be observed during all phases of operation, service, and
repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in
this manual violates safety standards of design, manufacture, and intended use of the product.
Dewesoft d.o.o. assumes no liability for the customer’s failure to comply with these requirements.

All accessories shown in this document are available as an option and will not be shipped as standard
parts.

8.2.1. Environmental Considerations
Information about the environmental impact of the product.

8.2.2. Product End-of-Life Handling
Observe the following guidelines when recycling a Dewesoft system:

8.2.3. System and Components Recycling
Production of these components required the extraction and use of natural resources. The substances
contained in the system could be harmful to your health and to the environment if the system is
improperly handled at its end of life! Please recycle this product in an appropriate way to avoid
unnecessary pollution of the environment and to keep natural resources.

This symbol indicates that this system complies with the European Union’s requirements
according to Directive 2002/96/EC on waste electrical and electronic equipment (WEEE).
Please find further information about recycling on the Dewesoft web site www.dewesoft.com

Restriction of Hazardous Substances

Dewesoft C++ Script V21-1 36/40

http://www.dewesoft.com

Dewesoft C++ Script
SOFTWARE USER MANUAL

This product has been classified as Monitoring and Control equipment and is outside the scope of the
2002/95/EC RoHS Directive. However, we take care of our environment and the product is lead-free.

8.2.4. General safety and hazard warnings for all Dewesoft systems
Safety of the operator and the unit depend on following these rules.

● Use this system under the terms of the specifications only to avoid any possible danger.
● Read your manual before operating the system.
● Observe local laws when using the instrument.
● DO NOT touch internal wiring!
● DO NOT use higher supply voltage than specified!
● Use only original plugs and cables for harnessing.
● You may not connect higher voltages than rated to any connectors.
● The power cable and connector serve as Power-Breaker. The cable must not exceed 3 meters, the

disconnect function must be possible without tools.
● Maintenance must be executed by qualified staff only.
● During the use of the system, it might be possible to access other parts of a more comprehensive

system. Please read and follow the safety instructions provided in the manuals of all other
components regarding warning and security advice for using the system.

● With this product, only use the power cable delivered or defined for the host country.
● DO NOT connect or disconnect sensors, probes or test leads, as these parts are connected to a

voltage supply unit.
● Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth

terminal), a non-interruptible safety earth ground must be provided from the mains power
source to the product input wiring terminals.

● Please note the characteristics and indicators on the system to avoid fire or electric shocks.
Before connecting the system, please read the corresponding specifications in the product
manual carefully.

● The inputs must not, unless otherwise noted (CATx identification), be connected to the main
circuit of category II, III and IV.

● The power cord separates the system from the power supply. Do not block the power cord, since
it has to be accessible for the users.

● DO NOT use the system if equipment covers or shields are removed.
● If you assume the system is damaged, get it examined by authorized personnel only.
● Adverse environmental conditions are Moisture or high humidity Dust, flammable gases, fumes

or dissolver Thunderstorm or thunderstorm conditions (except assembly PNA) Electrostatic
fields, etc.

● The measurement category can be adjusted depending on module configuration.
● Any other use than described above may damage your system and is attended with dangers like

short-circuiting, fire or electric shocks.
● The whole system must not be changed, rebuilt or opened.
● DO NOT operate damaged equipment: Whenever it is possible that the safety protection features

built into this product have been impaired, either through physical damage, excessive moisture,
or any other reason, REMOVE POWER and do not use the product until the safe operation can be
verified by service-trained personnel. If necessary, return the product to Dewesoft sales and
service office for service and repair to ensure that safety features are maintained.

● If you assume a more riskless use is not provided anymore, the system has to be rendered
inoperative and should be protected against inadvertent operation. It is assumed that a more
riskless operation is not possible anymore if the system is damaged obviously or causes strange

Dewesoft C++ Script V21-1 37/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

noises. The system does not work anymore. The system has been exposed to long storage in
adverse environments. The system has been exposed to heavy shipment strain.

● Warranty void if damages caused by disregarding this manual. For consequential damages, NO
liability will be assumed!

● Warranty void if damage to property or persons caused by improper use or disregarding the
safety instructions.

● Unauthorized changing or rebuilding the system is prohibited due to safety and permission
reasons (CE).

● Be careful with voltages >25 VAC or >35 VDC! These voltages are already high enough in order to
get a perilous electric shock by touching the wiring.

● The product heats during operation. Make sure there is adequate ventilation. Ventilation slots
must not be covered!

● Only fuses of the specified type and nominal current may be used. The use of patched fuses is
prohibited.

● Prevent using metal bare wires! Risk of short circuit and fire hazard!
● DO NOT use the system before, during or shortly after a thunderstorm (risk of lightning and high

energy over-voltage). An advanced range of application under certain conditions is allowed with
therefore designed products only. For details please refer to the specifications.

● Make sure that your hands, shoes, clothes, the floor, the system or measuring leads, integrated
circuits and so on, are dry.

● DO NOT use the system in rooms with flammable gases, fumes or dust or in adverse
environmental conditions.

● Avoid operation in the immediate vicinity of high magnetic or electromagnetic fields,
transmitting antennas or high-frequency generators, for exact values please refer to enclosed
specifications.

● Use measurement leads or measurement accessories aligned with the specification of the
system only. Fire hazard in case of overload!

● Do not switch on the system after transporting it from a cold into a warm room and vice versa.
The thereby created condensation may damage your system. Acclimatise the system unpowered
to room temperature.

● Do not disassemble the system! There is a high risk of getting a perilous electric shock.
Capacitors still might be charged, even if the system has been removed from the power supply.

● The electrical installations and equipment in industrial facilities must be observed by the security
regulations and insurance institutions.

● The use of the measuring system in schools and other training facilities must be observed by
skilled personnel.

● The measuring systems are not designed for use in humans and animals.
● Please contact a professional if you have doubts about the method of operation, safety or the

connection of the system.
● Please be careful with the product. Shocks, hits and dropping it from already- lower level may

damage your system.
● Please also consider the detailed technical reference manual as well as the security advice of the

connected systems.
● This product has left the factory in safety-related flawlessness and in proper condition. In order to

maintain this condition and guarantee safety use, the user has to consider the security advice
and warnings in this manual.

EN 61326-3-1:2008

Dewesoft C++ Script V21-1 38/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

IEC 61326-1 applies to this part of IEC 61326 but is limited to systems and equipment for industrial
applications intended to perform safety functions as defined in IEC 61508 with SIL 1-3.

The electromagnetic environments encompassed by this product family standard are industrial, both
indoor and outdoor, as described for industrial locations in IEC 61000-6-2 or defined in 3.7 of IEC 61326-1.

Equipment and systems intended for use in other electromagnetic environments, for example, in the
process industry or in environments with potentially explosive atmospheres, are excluded from the
scope of this product family standard, IEC 61326-3-1.

Devices and systems according to IEC 61508 or IEC 61511 which are considered as “operationally
well-tried”, are excluded from the scope of IEC 61326-3-1.

Fire-alarm and safety-alarm systems, intended for the protection of buildings, are excluded from the
scope of IEC 61326-3-1.

Dewesoft C++ Script V21-1 39/40

Dewesoft C++ Script
SOFTWARE USER MANUAL

9. Documentation version history

Version Date Notes

1.0 16. 2. 2018 Initial version

V20-1 4. 9. 2020 New template

V21-1 12. 10. 2021 Updated Chapter 6.2. Added the third
proprietary option for bundle export.
Updated the image of Bundle export
settings. Added description of the
bundle locking and a corresponding
image.

Dewesoft C++ Script V21-1 40/40

